39 research outputs found

    Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors

    Get PDF
    Interreplicate variability—the spread in output values among units of the same sensor subjected to essentially the same condition—can be a major source of uncertainty in sensor data. To investigate the interreplicate variability among eight electromagnetic soil moisture sensors through a field study, eight units of TDR315, CS616, CS655, HydraProbe2, EC5, 5TE, and Teros12 were installed at a depth of 0.30 m within 3 m of each other, whereas three units of AquaSpy Vector Probe were installed within 3 m of each other. The magnitude of interreplicate variability in volumetric water content (θv) was generally similar between a static period near field capacity and a dynamic period of 85 consecutive days in the growing season. However, a wider range of variability was observed during the dynamic period primarily because interreplicate variability in θv increased sharply whenever infiltrated rainfall reached the sensor depth. Interreplicate variability for most sensors was thus smaller if comparing θv changes over several days that excluded this phenomenon than if comparing θv directly. Among the sensors that also reported temperature and/or apparent electrical conductivity, the sensors exhibiting the largest interreplicate variability in these outputs were characterized by units with consistently above or below average readings. Although manufacturers may continue to improve the technology in and the quality control of soil moisture sensors, users would still benefit from paying greater attention to interreplicate variability and adopting strategies to mitigate the consequences of interreplicate variability

    Water effects on optical canopy sensing for late-season site-specific nitrogen management of maize

    Get PDF
    The interpretation of optical canopy sensor readings for determining optimal rates of late-season site-specific nitrogen application to corn (Zea mays L.) can be complicated by spatially variable water sufficiency, which can also affect canopy size and/or pigmentation. In 2017 and 2018, corn following corn and corn following soybeans were subjected to irrigation×nitrogen fertilizer treatments in west central Nebraska, USA, to induce variable water sufficiency and variable nitrogen sufficiency. The vegetation index-sensor combinations investigated were the normalized difference vegetation index (NDVI), the normalized difference red edge index (NDRE), and the reflectance ratio of near infrared minus red edge over near infrared minus red (DATT) using ACS-430 active optical sensors; NDVI using SRSNDVI passive optical sensors; and red brightness and a proprietary index using commercial aerial visible imagery. Among these combinations, NDRE and DATT were found to be the most suitable for assessing nitrogen sufficiency within irrigation levels. While DATT was the least sensitive to variable water sufficiency, DATT still tended to decrease with decreasing water sufficiency in high nitrogen treatments, whereas the effect of water sufficiency on DATT was inconsistent in low nitrogen treatments. A new method of quantifying nitrogen sufficiency while accounting for water sufficiency was proposed and generally provided more consistent improvement over the mere averaging of water effects as compared with the canopy chlorophyll content index method. Further elucidation and better handling of water-nitrogen interactions and confounding are expected to become increasingly important as the complexity, automation, and adoption of sensor-based irrigation and nitrogen management increase

    Pumpage Reduction by using Variable Rate Irrigation to Mine Undepleted Soil Water

    Get PDF
    Conventional irrigation schedules are typically based on portions of the field where root zones hold the least available soil water. This leaves undepleted available water in areas with larger water holding capacities. The undepleted water could be used through variable-rate irrigation (VRI) management; however, the benefits of VRI without in-field mapping are unexamined. In this research, the field-averaged amount of undepleted available soil water in the root zone was calculated from the NRCS Soil Survey Geographic database for 49,224 center-pivot irrigated fields in Nebraska. Potential reductions in pumpage from mining undepleted available water were then estimated. Results of the analysis show that widespread adoption of zone control VRI technology based only on the pumping savings from mining undepleted available water may be unwarranted for current VRI costs and average pumping energy expenses in the Central Plains (0.0026m3to0.0026 m-3 to 0.0947 m-3). Pumpage reductions exceeded 51 mm year-1 for only 2% of the fields and exceeded 25 mm year-1 for 13% of the fields; thus, reductions may be small compared to annual pumpage requirements. If VRI were im-plemented on all fields with a potential pumpage reduction greater than 51 or 25 mm year-1, the volume of pumpage reduction would be approximately 0.35% or 1.3%, respectively, of the total irrigation pumpage in Nebraska. These data may be a conservative estimate of pumpage reduction in fields where the measured variability in soil properties exceeds that described by the NRCS Soil Survey, or if undepleted water is mined early in the season and the soil water profile is refilled by precipitation, allowing undepleted water to be mined again. Adoption of zone control VRI is most feasible for fields where the pumpage reduction from VRI is large and pumping costs are above normal. Pivot fields with high un-depleted water were sparsely distributed across Nebraska and were often located along streams and or in associated alluvial areas. The prevalence of fields with large quantities of undepleted water differed among and within soil associations. We were unable to assign feasibility of VRI based on the soil association, as the occurrence of undepleted water varied significantly within a soil association. These findings should assist producers and other entities interested in VRI technology; however, pumpage reduction through use of undepleted soil water is only one benefit of VRI technology and management. Producers are encouraged to consider all potential benefits when analyzing VRI investments

    Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors

    Get PDF
    Interreplicate variability—the spread in output values among units of the same sensor subjected to essentially the same condition—can be a major source of uncertainty in sensor data. To investigate the interreplicate variability among eight electromagnetic soil moisture sensors through a field study, eight units of TDR315, CS616, CS655, HydraProbe2, EC5, 5TE, and Teros12 were installed at a depth of 0.30 m within 3 m of each other, whereas three units of AquaSpy Vector Probe were installed within 3 m of each other. The magnitude of interreplicate variability in volumetric water content (θv) was generally similar between a static period near field capacity and a dynamic period of 85 consecutive days in the growing season. However, a wider range of variability was observed during the dynamic period primarily because interreplicate variability in θv increased sharply whenever infiltrated rainfall reached the sensor depth. Interreplicate variability for most sensors was thus smaller if comparing θv changes over several days that excluded this phenomenon than if comparing θv directly. Among the sensors that also reported temperature and/or apparent electrical conductivity, the sensors exhibiting the largest interreplicate variability in these outputs were characterized by units with consistently above or below average readings. Although manufacturers may continue to improve the technology in and the quality control of soil moisture sensors, users would still benefit from paying greater attention to interreplicate variability and adopting strategies to mitigate the consequences of interreplicate variability

    Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment

    Get PDF
    Irrigation scheduling methods have been used to determine the timing and amount of water applied to crops. Scheduling techniques can include measurement of soil water content, quantification of crop water use, and monitoring of crop physiological response to water stress. The aim of this study was to evaluate the performance of a simplified crop canopy temperature measurement (CTM) method as Irrigation Principles. Soil and Water Conservation Engineera technique to schedule irrigation for maize. Specifically, the Degrees Above Non-Stressed (DANS) index, which suggests water stress when canopy temperature exceeds the non-stressed canopy temperature (Tcns), was determined by estimating Tcns from a weather based multilinear regression model. The modeled Tcns had a strong correlation with observed Tcns with a pooled R2 values of 0.94 across the 2018, 2019, and 2020 growing seasons. This DANS index was also highly correlated with the conventionally used Crop Water Stress Index (CWSI) with R2 values of 0.67, 0.59, and 0.76 in 2018, 2019, and 2020, respectively. Furthermore, DANS had a strong linear relationship with soil water depletion above 60% in the 0.60 m soil profile with an R2 of 0.78. The CTM method was also compared to more commonly used scheduling methods namely: soil moisture monitoring (SMM) and crop evapotranspiration modeling (ETM). Grain yield was significantly lower for the CTM method than for the ETM method in 2018 and 2020 but not in 2019. No significant differences were observed in Irrigation Water Productivity (IWP) in 2018; however, all treatments were significantly different with the CTM method having the greatest IWP in 2020. For attempting to trigger full irrigation with the CTM method, a fixed DANS threshold of 0.5 ◦C was found to be more appropriate than the literature value of 1.0 ◦C, but consideration of crop growth stage would further improve scheduling

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Quantification of Variable Rate Irrigation Benefits and Spatial Variability in Root Zone Water Holding Capacity

    Get PDF
    Variable rate irrigation (VRI) investment decisions require field-specific knowledge of benefits. The objective of this research was to help producers and consultants consider and quantify potential benefits of VRI. First, a conceptual model was developed for evaluating the public and/or private gain from adopting VRI where irrigation water supply is non-restrictive. Potential benefits were classified into three categories and were attributed to ten reasons. In the Central Plains at current prices, a small improvement in corn (maize) yield would make a large contribution to VRI profitability. Second, the potential irrigation withdrawal reduction from adapting VRI to spatial heterogeneity of root zone water holding capacity (R)—one particular benefit of VRI—was estimated for 49,224 center pivot irrigated fields in Nebraska. On each of these fields, the amount of R that is unutilized by conventional irrigation but can be mined annually by VRI was calculated from the statewide gridded Soil Survey Geographic database (gSSURGO). Over 51 mm of potential withdrawal reduction from this application of VRI was found on 2% of the analyzed fields. Third, based on field research, a method of conducting a field characterization of R was recommended for refining estimates of those withdrawal reductions and for informing VRI management. Field capacity (FC) was observationally determined by measuring in-situ soil water content after the wet soil has had time to drain following substantial precipitation, and R was spatially predicted by regression with a densely known auxiliary variable. As compared with FC values computed from gSSURGO and pedotransfer function outputs, FC values computed according to the observational method were more effective in accounting for observed soil moisture patterns at the study site. The field characterization of R, therefore, may be advantageous on fields where the expected profit from mining unutilized R with VRI exceeds the cost of characterization. Future research should present field demonstrations of VRI profitability, provide guidance on VRI management, and produce transferable methods for and field-specific results of quantifying VRI benefits. Adviser: Derek Heere
    corecore